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ABSTRACT2

Spatial representations in the entorhinal cortex (EC) and hippocampus (HPC) are fundamental to3
cognitive functions like navigation and memory. These representations, embodied in spatial field4
maps, dynamically remap in response to environmental changes. However, current methods, such5
as Pearson’s correlation coefficient, struggle to capture the complexity of these remapping events,6
especially when fields do not overlap, or transformations are non-linear. This limitation hinders7
our understanding and quantification of remapping, a key aspect of spatial memory function. To8
address this, we propose a family of metrics based on the Earth Mover’s Distance (EMD) as a9
versatile framework for characterizing remapping. Applied to both normalized and unnormalized10
distributions, the EMD provides a granular, noise-resistant, and rate-robust description of11
remapping. This approach enables the identification of specific cell types and the characterization12
of remapping in various scenarios, including disease models. Furthermore, the EMD’s properties13
can be manipulated to identify spatially tuned cell types and to explore remapping as it relates14
to alternate information forms such as spatiotemporal coding. By employing approximations of15
the EMD, we present a feasible, lightweight approach that complements traditional methods. Our16
findings underscore the potential of the EMD as a powerful tool for enhancing our understanding17
of remapping in the brain and its implications for spatial navigation, memory studies and beyond.18

Keywords: remapping, stability, place cell, grid cell, activity maps, optimal transport, spatial coding, spatiotemporal19

1 INTRODUCTION

The entorhinal cortex (EC) and hippocampus (HPC) have been shown to play a crucial role in spatial20
navigation and memory (Frank et al. (2000), Chrobak et al. (2000), Fyhn et al. (2004), Buzsáki and Moser21
(2013), Lever et al. (2002)). Cells in the EC-HPC circuit encode a neural representation of the spatial22
environment and its associated contexts (Fyhn et al. (2004), Hafting et al. (2005), Moser et al. (2017)). This23
encoding results in a variety of cell behaviors with different characteristics including, but not limited to,24
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place cells, grid cells, object cells and other vector or feature based coding (O’Keefe and Dostrovsky (1971),25
Iwase et al. (2020), Lisman (2007), Steffenach et al. (2005), Moser et al. (2008), Solstad et al. (2008), Diehl26
et al. (2017), Høydal et al. (2019), Hardcastle et al. (2017), Tsao et al. (2013)). However, the spatial map27
generated from the coordinated activity of these cell types is not necessarily stable. In fact, multiple studies28
demonstrated that place cells are able to remap their activity flexibly and in response to small changes in29
their environment (Anderson and Jeffery (2003), Colgin et al. (2008), Wilson and McNaughton (1993)).30
Evidence suggests this remapping of firing activity patterns enables dynamic encoding of different spatial31
representations, a mechanism that underlies episodic memory (Leutgeb et al. (2005b), Leutgeb et al. (2004),32
Ferbinteanu and Shapiro (2003)). It is therefore of particular interest to be able to quantify the degree of33
remapping occurring in different spatial cell types and to be able to characterize the spatiotemporal changes34
in a given firing rate map. Such firing rate maps also need to be quantified outside the EC-HPC circuit,35
such as in visual areas, and are not necessarily restricted to position as a dimension.36

Currently, spatial remapping has been segregated under two categories thought to represent distinct37
environmental changes; these are rate remapping and global remapping (Leutgeb et al. (2005b), Colgin et al.38
(2008)). Rate remapping is observed when testing animals in the same location but changing contextual39
cues within the environment (e.g. object color) and is denoted by a change in firing rate unaccompanied by40
a shift in place field location (Leutgeb et al. (2005b)). Global remapping, however, can involve both firing41
rate changes and shifts in firing fields and can occur both when testing animals in different locations and42
with certain salient cues (Wood et al. (2000), Kentros et al. (1998), Bostock et al. (1991)). As such the43
boundaries between the mechanisms that give rise to global and rate remapping are not strictly delineated44
with respect to the degree of change necessary to trigger them. The underlying processes do however differ45
in that rate remapping supports continuous information streams and has been observed to occur gradually46
in response to environmental changes such as morphing of different arena shapes (Leutgeb et al. (2005a),47
Wills et al. (2005)), while global remapping is an abrupt process where all fields for a given cell remap48
entirely without intermediate steps (Leutgeb et al. (2005b), Leutgeb et al. (2005a))49

Although global remapping is all-or-none within a cell, this is not necessarily the case for the broader50
population. The presence of partial remapping suggests that global remapping is used to transition between51
stable and unstable states thus supporting continuous-like information streams through population responses52
(Wills et al. (2005), Tsodyks (1999)). These differing subsets of reference frames within global remapping53
need to be characterized to understand how these transitions between states occur and the environmental54
influences driving them. Additionally, global remapping seems to be a product of both a rate component55
and a spatial component where, in the former, firing rate is altered and, in the latter, firing place fields56
can be translated, rotated, scaled or otherwise reshaped. To better understand the specifics of these spatial57
transformations we need to be able to thoroughly characterize the transitions between states. This requires58
disentangling the different components involved in remapping. There are three main components that59
contribute to the spatial maps involved in remapping studies. These are a rate component, a temporal60
component and a spatial component. The first is well defined in remapping studies however, given that rate61
coding is not the only information coding schema present in EC and HPC spatial cells, it is important to be62
able to describe remapping as it relates to alternate information forms such as spatiotemporal coding.63

The main methods to identify rate and global remapping are based on Pearson’s r correlation applied to64
spatial bins on a firing rate map (Leutgeb et al. (2005b), Wills et al. (2005), Hussaini et al. (2011)). This65
approach is sufficient to identify linear relationships in transitions between firing rate maps on different66
experimental sessions or conditions. However, Pearson’s r is vulnerable to outliers and cannot effectively67
capture non-linear transitions nor can it allow for a segregation of remapping types beyond that of pure rate68
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remapping or joint rate-spatial remapping. This correlation approach compares spatial bins at the same69
position across different ratemaps for a given cell and is most informative when only linear rate changes70
are occurring. Pearson’s r can quantify simple rate changes but is unable to quantify global remapping71
beyond its presence or lack thereof. Therefore the profile for global remapping incorporates both a change72
in firing rate and any type of non-linear shift in the spatial map density that cannot easily be described by73
a correlation metric. Pearson’s r also requires distributions to be the same in size, owing to its bin to bin74
approach, which restricts the information that can be carried in a sample of the rate map. This can result in75
spurious correlations for fields with different sizes and arenas with different shapes.The lack of explicit76
characterization of the varied transformations observed in spatial remapping is particularly problematic in77
disease models where seemingly random distortions in fields are seen (Jun et al. (2020), Fu et al. (2017),78
Ridler et al. (2020), Mably et al. (2017)). We therefore believe a more rigorous approach, focused on79
spatiotemporal distances that capture non-linear rate transformations, is necessary to further probe the80
complexities of remapping clearly visible in spatial navigation and memory studies.81

One such method that can complement Pearson’s r correlations for rate remapping and extend our ability82
to identify and describe both spatial and temporal transformations in global remapping is the Earth Mover’s83
Distance (EMD). The EMD is a distance computed on a pair of distributions (Vasserstein (1969), Panaretos84
and Zemel (2019)), often applied in computer science for image analysis tasks (Rubner et al. (2000)). This85
distance when computed using unnormalized distributions can also be referred to as the discrete Wasserstein86
distance; for normalized distributions it reduces to the Wasserstein distance, but will be described as the87
‘normalized EMD’ in this paper to avoid confusing the EMD and Wasserstein distance as wholly separate88
metrics. The EMD has been shown to be a highly robust spike train distance metric when quantifying89
temporal similarity patterns in spike trains with varying rate profiles, enabling us to probe the pure temporal90
component of remapping (Grossberger et al. (2018),Sihn and Kim (2019), Sotomayor-Gómez et al. (2023)).91
However, the rate component remains the primary source of evidence in current remapping studies while92
the spatial component, as well as the joint spatio-temporal component, remain poorly quantified.93

This study aims to address the challenges in characterizing the remapping process of spatial cell94
types observed in navigation studies, memory studies, and beyond, with particular focus on non-linear95
transformations and transitions between states. Current methods, such as Pearson’s r correlation, have96
limitations in distinguishing simple rate changes from broader whole field changes in rate and space.97
Therefore, we propose a more rigorous and encompassing approach by employing the Earth Mover’s98
Distance (EMD). The EMD quantifies the minimum optimal transport distance between two 2D firing rate99
distributions capturing non-linear non-overlapping transformations and changes in shape and dispersion of100
fields. We aim to explore how the EMD can enhance our understanding of mechanisms underlying spatial101
cell remapping and provide a valuable metric for quantifying remapping across different experimental102
trials/sessions. We consider the use of such a metric for neurodegenerative or otherwise impaired remapping103
studies by exploring spatial sensitivity and noise robustness. We investigate how generalized approximations104
of the EMD could be used to manipulate spatial sensitivity properties and identify various cell types105
associated with points, areas, or other mapped stimuli, such as object and trace cells in the lateral entorhinal106
cortex (LEC) or point-driven attention mechanisms in visual areas. We also consider the feasibility of107
applying the EMD given the computational cost by comparing the sliced EMD approximation, which108
allows for efficient applications of the normalized and unnormalized 2D EMD by computing the average109
of many 1D EMD values along random image slices (Bonneel et al. (2015)). This approximation is used110
in all computations in this paper apart from the single-point Wasserstein generalizations (see methods).111
We further assess the feasibility of applying the EMD given the nature of stability and remapping data112
where rate effects are varied, and rate changes commonplace. The EMD’s performance is also assessed113
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against the non-linear spearman rank correlation coefficient, and using real life data examples. Through this114
comprehensive analysis, we underscore the superiority of the EMD over traditional metrics, highlighting115
its unique ability to explain complex spatiotemporal transformations, effectively distinguish various global116
remapping patterns, and maintain robustness in the face of noise, rate fluctuations, and other potential117
distortions.118

2 METHODS

2.1 Synthetic Fields119

Place cells and grid cells were modeled as gaussian blobs with fixed standard deviation. Place cell120
centroids were restricted to bins inside the square map. Place cells were modeled as (17,17) ratemaps with121
standard deviation varying between 1 and 3 for different figures where standard deviation was consistent.122
For elliptical fields, two standard deviation parameters are used for the y and x direction. These were set to123
1 and 3 respectively. To model remapping, we shift the location of the centroid on a wider map (N*3, N*3)124
and slice the relevant portion to center the field as needed.125

Grid cells consisted of multiple place fields with kernel size and standard deviation parameters. They126
were organized in a hexagonal pattern across a wider grid (N*8 + kernel * 2) with gapN bins separating127
place field edges both horizontally and vertically. Slices were taken across this wider grid to obtain (17,17)128
rate maps of grid ‘cells’. To model remapping, we shift the initial sliced grid map by N*N pairs (from 0 to129
N) on a wider map (N*8 + kernel*2) and slice the relevant portion to shift the grid phase as needed.130

In generating heatmaps, while place field centroids are shifted across the map (left/right/up/down) and131
tested against a fixed field at the center, grid fields are shifted right by 0 to N and down by 0 to N creating132
stepwise slices across the wider grid. These slices are tested against the initial sliced grid map. Therefore133
grid cell examples are not shifted around the absolute center of the grid map but rather moving away from134
the top left corner. Given that the wider grid pattern is consistent and symmetrical, the information provided135
by the results should be no different than if a single point at the center of the grid map was chosen to shift136
around.137

Both wider and tighter spaced grid modules were considered by varying standard deviation and gapN138
parameters. Grid field centroids were not necessarily inside the (17,17) ratemap at all slices taken and a139
part of the field excluding the centroid could be included in the slice.140

All fields were interpolated to (257, 257) for plotting only. Additional examples of synthetic fields without141
interpolation are provided in the supplementary documents (S1-S3).142

2.2 EMD143

The Earth Mover’s Distance (EMD) is a measure of dissimilarity between two arbitrary un-normalized144
distributions defined over a metric space with a distance metric d(x, y). Intuitively, EMD can be thought of145
as the minimum cost required to transform one distribution into another, where the cost is proportional to146
the amount of ”earth” moved and the distance it is moved. The general formula for the EMD is:147

EMD(a, b) = min
f2F (a,b)

X

x,y2D
f(x, y)d(x, y) (1)
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In this equation, f(x, y) represents the flow from element x to element y, and d(x, y) denotes the ground
distance between ⇥ and y. F(a, b) is the set of all feasible flows satisfying the following constraints:

X

y2D
f(x, y)  a(x), 8x 2 D

X

x2D
f(x, y)  b(y), 8y 2 D

X

x,y2D
f(x, y) = min

0

@
X

x2D
a(x),

X

y2D
b(y)

1

A

These constraints ensure that the total flow from each element in a does not exceed its value, the total flow148
to each element in b does not exceed its value, and the total flow between the two distributions is equal to149
the smaller sum of either distribution.150

To compute the EMD, one must solve a transportation problem, which is an instance of a minimum-cost151
flow problem. In the one- dimensional case, the EMD has a closed-form solution that is much simpler to152
compute compared to the multi-dimensional case.153

Let P(x) and Q(x) be two one-dimensional distributions defined over the same domain, with cumulative154
distribution functions FP(x) and FQ(x) . The EMD between them can be computed as:155

EMD(P,Q) =

Z ��FP (x)� FQ(x)
�� dx (2)

In the discrete case, it can be calculated as:156

EMD(P,Q) =
nX

i=1

��FP (i)� FQ(i)
�� (3)

where FP (i) and FQ(i) are the cumulative sums of the respective distributions up to index 1. The one-157
dimensional EMD has a closed-form solution because the optimal transport plan is unique and easy to158
find. In contrast, the multidimensional EMD, which extends the one- dimensional EMD algorithm to159
multiple-dimensional signals such as images or videos, does not have a closed-form solution. The optimal160
transport plan is more complicated, and the problem becomes a linear optimization problem. Common161
approaches to computing the multi-dimensional EMD include the Hungarian algorithm or other linear162
programming techniques, which can solve the problem in polynomial time.163

The algorithmic complexity of the multi-dimensional EMD depends on the chosen method for solving the164
linear optimization problem (Figure S11). For the Hungarian algorithm, the complexity is O

�
n
3
�
, where n165

is the number of elements in each distribution. The 1D Wasserstein however has a closed form solution166
with runtime O(n). With the python package scipy’s optimized implementation this results in a more167
efficient runtime than the Pearson’s r correlaton function (Figure S11). For two dimensional distributions,168
the complexity increases to O

�
(mn)3

�
, for a m⇥ n distribution. For example, rate-maps of size 16⇥ 16169

(n = 162 = 256) would require 166 = 16, 777, 216 operations and a 32 ⇥ 32 ratemap would require170
1, 073, 741, 824 operations. The computational cost can be reduced in practice by using approximations. In171
this paper, we use the Sliced Earth Mover’s Distance (Sliced EMD) (Bonneel et al. (2015)).172
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The Sliced EMD is an efficient algorithm to estimate the EMD between multi-dimensional distributions,173
such as 2D distributions, by leveraging the closed-form solution for the 1D case. The main idea behind the174
sliced EMD is to project the multi- dimensional distributions onto multiple one-dimensional lines (slices)175
and then compute the 1D EMD on each of these slices. The average of the 1D EMDs across all slices176
provides an approximation of the multi-dimensional EMD.177

The sliced EMD algorithm does the following steps:178

• Choose a set of random directions (slices) in the 2D space.179

• Project the 2D distributions onto each of these slices.180

• For each slice, sort the projections of both distributions.181

• Calculate the 1D EMD between the sorted projections using the closed-form solution.182

• Average the 1D EMDs across all slices to obtain the sliced EMD.183

The algorithmic complexity of the sliced EMD is determined by the number of slices (L), the number of184
points in each distribution (N ), and the sorting complexity. Since sorting has an average complexity of185
O(N logN), the total complexity of the sliced EMD algorithm is O(LN logN). For a 16⇥ 16 ratemap186
and L = 103 projections would be 2, 048, 000. For a 32⇥32 ratemap, the complexity scales to 10, 240, 000.187
The percent complexity of the Sliced EMD compared to the EMD computed with the Hungarian Algorithm188
for 16⇥ 16 and 32⇥ 32 ratemaps respectively is 1.22% and 0.95% respectively.189

Compared to the Hungarian algorithm and other linear programming techniques, the sliced EMD provides190
a much more computationally efficient approximation for multi-dimensional EMD, especially when the191
number of points in the distributions is large. While the accuracy of the sliced EMD may not be as high as192
the exact EMD computed using the Hungarian algorithm, it often provides a very good balance between193
computational efficiency and accuracy, making it suitable for various applications where an exact EMD194
calculation would be too computationally expensive. For two dimensional distributions, the sliced EMD195
generally converges with between one hundred and ten thousand projections (Figure S11). Even at the upper196
bound of ten thousand projections, the sliced EMD is substantially more efficient than Optimal Transport197
techniques. We used the sliced EMD approximation with 10**4 slices to reproduce near-theoretical EMD198
scores on all figures in our analysis except for field localization figures (10**2).199

2.3 Single point Wasserstein200

In this paper, we primarily use the Sliced Earth Mover’s Distance (EMD) to compare two distributions.201
However, there is a special use case where the EMD complexity can be further reduced. This use case202
arises when comparing a normalized ratemap with a distribution that has all its mass concentrated at a203
single point.204

In this case, the EMD formula simplifies to the sum of the distances between the point of interest and each205
point in the distribution, weighted by the normalized proportion of mass at that point in the distribution.206
Specifically, let P be a normalized ratemap and Q be a distribution that has all its mass concentrated at a207
single point q. The EMD between P and Q is given by:208

EMD(P,Q) =
X

x2D
kx� qk2 · P (x) (4)
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Here, kx� qk2 denotes the Euclidean distance between x and q, and P(x) represents the proportion of209
mass at point ⇥ in the normalized ratemap P. This formula reduces the complexity of computing the EMD210
from O

�
n
3\ log n

�
to O(n), where n is the number of elements in the distribution (Figure S11).211

This simplified EMD formula is useful for object remapping, where one is interested in comparing a212
ratemap to a distribution that represents a single object. For example, it can be used to compare the ratemap213
of a rodent’s environment with a distribution that represents the location of a reward or danger zone.214

2.4 Polymorphisms215

Here, we outline specific polymorphisms of the EMD that we compute for several use cases.216

2.4.1 Whole map EMD217

The whole map EMD is computed with two ratemaps. For this use case, the Sliced EMD is used with218
between 102 and 104 projections.219

2.4.2 Field EMD220

The field EMD is a special use case where only firing fields are considered. In this case, rates are imputed221
to zero outside of the firing field while rates within the firing field are retained. The Sliced EMD is then222
used to estimate the EMD on these masked ratemaps.223

2.4.3 Binary EMD224

The binary EMD is computed using ratemaps where one is imputed for the bins inside the firing field and225
zero is imputed for those outside the firing field.226

2.4.4 Centroid distance227

The centroid distance refers to the euclidean distance between two points (e.g. field centroid-object or228
field centroid- field centroid)229

2.5 Reference quantiles230

Optimal Transport (OT) metrics, encompassing both Earth Mover’s Distance (EMD) and Wasserstein231
Distances, provide a measure of the dissimilarity between two probability distributions. However, due232
to their unbounded nature and susceptibility to various external factors, it is often useful to standardize233
these metrics for meaningful comparisons. To do this, we propose the following steps to transform raw OT234
values into a relative scale, in terms of their position within a reference distribution.235

• Choose a counterfactual distribution to standardize the OT metrics. For example, the counterfactual236
could be OT metrics from a sampling of mis-matched neurons within the same ensemble.237

• When the data is hierarchical (e.g. neurons from different brain regions), it is advisable to compute238
quantiles separately for each subgroup to ensure meaningful comparisons within the hierarchy.239

• For each observed OT metric value, compute the quantile q as follows. Let N be the total number of240
samples in the counter-factual distribution. Let n be the number of samples less than the observed241
value. Let q=n/N. This results in a quantile value between 0 and 1 for each observed OT metric.242

OT quantiles can be used to assess neural stability and remapping in two main ways. First, the quantiles243
themselves can be interpreted as one-tailed p-values, gauging the likelihood that each neuron’s observed244
stability level deviates significantly from what could be expected by chance. The second major way of245
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using OT quantiles is to consider them as a standard scale for group-based hypothesis testing. For example,246
differences in the representational stability of neurons from two or more groups may be assessed using an247
appropriate hypothesis test or regression model.248

2.6 Firing blob extraction249

Firing fields were estimated as in (Fyhn et al. (2007)). The peak firing rate was chosen as any bin in the250
rate map with the largest value (rate). Firing fields were determined as a contiguous region where the firing251
rate was above 20% of the peak rate. Therefore the top 80% of bins were considered and a blob extraction252
procedure was then used to extract contiguous regions.253

2.7 Correlation measures254

Pearson’s r correlation coefficients were computed using the python package Scipy. Correlations were255
computed between the raw and normalized 2D gaussian distributions by comparing the value at each bin256
in the NxN ratemap. Spearman-rank correlation coefficients were computed in the same way using the257
spearman function instead.258

2.8 Data processing259

Pre-processing steps for medial lateral entohinbal cortex (MEC) and HPC recordings of mouse models in260
the lab. Processing steps are also provided for an open-source place cell dataset from the HPC of mice.261

2.8.1 MEC & HPC examples262

Ratemap dimensions were set to 32 by 32. Firing rates were determined by dividing spike number and263
time for each bin of the two smoothed maps. Cell recordings were done in rectangular arenas with some264
HPC cells tested in alternating sessions of circular and rectangular arenas. Spatial information scores were265
computed as per the Skaggs’ formula which quantifies the information about animal location carried in a266
spike as bits per spike (Skaggs et al. (1992)). Computation of grid and border scores was done as described267
previously (Bonnevie et al. (2013), Langston et al. (2010)). The largest border score of the 4 available268
borders was chosen.269

2.8.2 Place cell dataset270

Place cells from hippocampal CA1 two-photon microscopy recordings in mice running across a virtual271
linear track were obtained from a published dataset (Grijseels et al. (2021a)). Deconvolved spike trains from272
Suite2P outputs were used directly as cumulative spike counts and converted to 1D firing rates. �F/F0273
fluorescence values were computed and preprocessed in the way described by the authors (Grijseels et al.274
(2021a)). The authors included a normalization step involving 15 second intervals. As such we averaged275
activity within 15 second intervals (112 frames) to better demonstrate the peak firing rate trend. Given276
that our current EMD use is not adapted to support negative values, this helped reduced the count of cells277
that had to be rejected given negative fluorescence. No other filtering was applied and this resulted in 752278
unique cells (including spatial and non-spatial cells).279

2.9 Code280

All analyses were done in python using custom code on Jupyter notebooks. All plots were made using281
matplotlib. Sliced Wasserstein distances on whole maps and field restricted maps as well as binary EMD282
distances were computed using the python optimal transport package (ot). Map to point distances were283
computed using custom single-point Wasserstein functions. All functions are integrated as part of our284
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custom analysis toolkit Neuroscikit. A prototype to analyze remapping under different EMD metrics for285
whole map to whole map cases, object/quadrant cases, field to field cases and specific session grouping286
cases is provided and being developed as part of this toolkit.287

3 RESULTS

In order to understand why EMD outperforms Pearson’s r, we need to explore remapping concepts with288
fine grained control of spatial fields. We therefore opted to synthetically generate examples of field maps289
where manipulations would allow us to vary 1) field size (stdev) 2) field noise (stdev) 3) field shape (ellipse290
or circle) 4) field count (1,2 or grid) and, most importantly, 5) field location (x,y) (see methods). We did291
this by modeling fields as gaussian blobs with centroid coordinates (x,y) on a square map of size N and a292
standard deviation parameter to vary the field intensity. When necessary and wherever specified, we added293
normally or uniformly distributed noise across the ratemap. These synthetic fields allow us to approximate294
certain cell types and different firing field situations that come about in experimentally recorded data. We295
use these synthetic fields to demonstrate how EMD outperforms Pearson’s r in single, dual and multi-field296
cases.297

3.1 EMD captures linear and non-linear transformations resulting in non-overlapping298
fields299

While single field maps can be thought of as a modeling of place cells, the insights derived from the300
EMD in such situations are applicable to any type of single field map. Therefore, to first compare the301
Earth Mover’s Distance (EMD) metric to the Pearson’s r correlation coefficient, we considered the simplest302
remapping case which involves two maps with one identical field in each, but at different locations. This303
would approximate the simplest case of spatial remapping where every aspect of a field is unchanged except304
the position on a map. More importantly however, this manipulation allows us to consider remapping305
transformations that result in non-overlapping fields, a case that Pearson’s r would quantify as no correlation306
(p = 0). Such cases are critical to quantify since remapping resulting in non-overlap still has a biological307
significance and/or a driver beyond that of having remapped or not. These non-overlapping transformations308
are often seen in cases of global remapping, and particularly in studies making use of changing arena309
shapes. In fact, this can be thought of as an analogue to testing remapping across two non-identical arenas310
where a cell field may move to a now non-overlapping region outside of the initial arena shape (e.g. circular311
then square arena).312

Our synthetic place fields were modeled as 2D-gaussian distributions (� = 1) with a single centroid313
(center bin) in the middle of a square map. To allow for a single point that is at the true center of the square314
map, we used N = 17 bins for height and width as opposed to the more traditional (16,16) ratemaps. While315
one ratemap had its field, and centroid, fixed to the middle of the map, the other was translated across316
the square such that the centroid had visited every possible bin in the (NxN) ratemap. At every point in a317
bin, the remapping scores were computed between the fixed and translated rate map. Weights from the318
ratemap were normalized resulting in a normalized EMD score (Wasserstein distance). As such, we tested319
remapping across all possible transformations resulting in a field, at least partially, still in the map but not320
necessarily overlapping with the fixed field. In doing so, we demonstrate that the EMD metric shows greater321
sensitivity to spatial transformations than the Pearson’s r correlation coefficient (Figure 1). Specifically,322
the EMD metric is able to capture all possible linear and non-linear transformations resulting in either323
overlapping or non-overlapping receptive fields. We show that, for a given pair of identical receptive fields,324
circular or elliptical, the EMD score is non-zero for all possible place field centroids whereas, as one325
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place field from the pair is gradually translated outside the field of the other, the Pearson’s r coefficient326
accelerates to 0 (Figure 1). In fact, Pearson’s r is unable to quantify any remapping that results in wholly327
non-overlapping receptive fields (r = 0) while the EMD is non-zero at all possible centroids. Therefore the328
coverage of information provided by Pearson’s r is restricted to remapping that results in overlap between329
fields and varies depending on the size and placement of the field in a map.330

Experimentally however, single field cells are not the only observation and various cell types exhibit331
multiple fields. One such prominent example is the observed pattern in grid cells where multiple fields332
are laid out in a hexagonal pattern. Combinations of these grid cells coordinate as grid modules with333
various orientation, spacing and other properties that enable advanced spatial processing using the overlap334
of multiple grid cells (Hafting et al. (2005), Fyhn et al. (2007)). As such, we then considered the case of335
overlapping grid modules, both tight and wide in their spacing. In the wide case, we modeled n = 3 grid336
fields with � = 2 and 10 bins of separation. In the tight case, we consider N = 3 grid fields with � = 1337
and only 6 bins of separation. Given that the map size was N = 17, and the requirement to not overlap338
fields in a grid cell, the decrease in bin separation from 10 to 6 is non-trivial and leads to significantly less339
spacing between grid fields. In both cases we follow a similar procedure as above and shift the grid module340
horizontally and vertically for N*N pairs of positions creating a map of EMD and Pearson’s r scores (Figure341
2). We demonstrate that EMD also surpasses Pearson’s r in its sensitivity to phase transitions. Specifically,342
we see that both EMD and Pearson’s r suitably capture the transition from in phase to out of phase but343
EMD provides a more specific quantification of this boundary. For ease of comparison, we inverted the344
color scheme of the EMD heatmaps so that hotter colors represent similarity and colder colors represent345
dissimilarity in a way aligned with how Pearson’s r shows up on comparable heatmaps. In doing so we see346
that the inverted EMD heatmap demonstrates a broader range of EMD values which allow for a narrower347
determination of the phase crossing boundary (thinner shaded region at boundary crossing). Additionally,348
Pearson’s r also results in 0 correlation scores when grid modules are completely non-overlapping, EMD349
however can still quantify these regions of no overlap. Therefore EMD also offers more spatial sensitivity350
in the case of grid fields.351

The EMD is especially useful in cases of no overlap where global remapping transformations struggle352
to be defined with Pearson’s r. The application of the EMD on place cell transformations resulting in353
non-overlap demonstrates this (Figure 1, Figure S4). We see reflective properties in that all four corners of354
the square rate map show the same EMD score gradient. Similarly, the top, bottom, left and right (N,S,W,E)355
locations show highly similar EMD values. This suggests that the EMD can facilitate the characterization356
of complex non-linear transformations involving rotations of fields, both overlapping and non-overlapping.357
This can also be extended to object fields, object trace fields, border fields and any other point or area driven358
field remapping. Additionally, given that the distribution of EMD scores extends outside the area covered359
by the gaussian field, this metric may be able to describe remapping and distortions of the underlying field,360
either in the form of simple scaling or complex degeneration of fields. The increased spatial sensitivity361
demonstrated by the EMD is also reflected in the elliptical and circular nature of place fields being captured362
in the underlying EMD distribution (Figure 1, Figure S4). EMD is equally sensitive and informative in the363
case of non identical place fields, where field shape is varied, as seen with the circle-ellipse pair and the364
rotated ellipse-ellipse pair further suggesting that the EMD may be used to capture complex changes in the365
field shape, size and distribution on a rate map (Figure S4).366

These complex changes and field distortions are commonplace in neurodegenerative studies such as367
the observed progressive degeneration of spatial maps in AD mouse models during spatial memory and368
navigation tasks (Jun et al. (2020), Fu et al. (2017), Ridler et al. (2020), Mably et al. (2017)). Despite369
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the impairments to the underlying spatial map, the remapping of such a map still needs to be quantified370
to assess differences in stability, learning and memory in these disease states. Additionally, inactivation371
studies, such as those involving muscimol to inactivate medial septum (MS) or hippocampal input to EC372
resulting in impaired grid cells and grid cell disappearance respectively (Brandon et al. (2011), Bonnevie373
et al. (2013)), are commonplace and assessing the stability of spatial maps post inactivation is important.374
Optogenetic methods have also shown similar findings with altered place and grid cell behavior (Miao et al.375
(2015), Miao et al. (2017)). To confirm the benefit of using the EMD in cases of impaired cell maps, we376
considered two more remapping scenarios involving no translations to the field centroid but rather in-place377
transformations on the field itself resulting in noisy or degenerate spatial maps.378

3.2 EMD is more stable to noise and field degeneration379

In the first case, we considered a scaling remapping of the place field where a gradual increase in the380
standard deviation of the gaussian field on a fixed (33x33) map results in an increasingly large field (�381
range = 0� 6). We found that while Pearson’s r was poor at quantifying spatial scaling and insensitive to382
minor changes, the EMD maintained its spatial sensitivity, and symmetry, allowing for a quantification383
of both scaling up and scaling down of place fields relative to a single fixed field (� = 3) (Figure 3). The384
EMD is therefore sensitive across a broader range of standard deviations than Pearson’s r which can only385
really distinguish large shifts in scaling magnitudes. Pearson’s r is also skewed such that larger standard386
deviations are less distinguishable than smaller ones while the EMD is robust in both directions. This387
susceptibility to field size restricts the information Pearson’s r can provide without additional testing. For388
example, Pearson’s r would indicate greater stability for larger field sizes, but this might simply be due to389
the increase in correlation bins. Larger field sizes have been associated with disease models such as in AD390
mice (Cacucci et al. (2008)). Therefore applying Pearson’s r directly would not necessarily be indicative of391
true stability and would require that the field sizes be normalized before making comparisons, as was done392
in a previous study (Hussaini et al. (2011)). EMD doesn’t suffer from this problem and has been shown in393
figure 3A to outperform Pearson’s r.394

In the next case, we considered a more complex ‘remapping’ of place fields (17 by 17 pixels) involving395
progressive degeneration of spatial maps as commonly seen in spatial memory studies of disease models396
(Jun et al. (2020),Fu et al. (2017)). To model this progressive degeneration of a spatial map and the increased397
‘noise’ associated with this degeneration, we added 17 by 17 pixel noise maps in a stepwise manner. The398
noise fields were sampled from a normal distribution (µ = 0) with increasing standard deviation. We did399
this for two pairs of place fields (� = 1), non-overlapping and partially overlapping place fields (Figure 3).400
For each we computed the whole map EMD, the Pearson’s r correlation coefficient and a field-restricted401
EMD following blob extraction based on 20% of the peak firing rate as in (Fyhn et al. (2007)). In the402
former non-overlapping case, we see significant deviation of the Pearson’s r correlation coefficient from403
the baseline remapping value of �0.0454 computed at no noise. The value is close to 0 since there is no404
overlap between the fields and bins outside the field are close to 0. We see however that as we increase405
the added noise, Pearson’s r score accelerates away from the true score and begins to plateau around406
r = 0.8 to 1, solely due to extraneous noise. The distribution of Pearson’s r scores evolving asymptotically407
is also evident in the overlapping case but with a larger base correlation given the initial overlap (base:408
0.339, µ: 0.814, �: 0.190).409

The whole map EMD on the other hand remains more stable relative to the initial no-noise score and410
deviates fewer times and at larger standard deviations. This trend is seen in the overlapping (base: 0.208, µ:411
0.369, �: 0.171) and non-overlapping (base: 1.17, µ: 1.29, �: 0.247) cases. We also find that the whole412
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map EMD is more stable at larger standard deviations than the field EMD. In the overlapping case the field413
EMD shows a greater standard deviation than the whole map EMD despite a similar base and mean (base:414
0.183, µ: 0.369, �: 0.222). This contrasts with the non-overlapping case where the field EMD shows a415
smaller standard deviation than the whole map EMD (base: 1.04, µ: 1.03, �: 0.202). These differences416
in the field EMD and whole map EMD can be understood through the interference of added noise on the417
detection of firing fields based on peak rate (see discussion). Even so, we find that the EMD metrics are418
overall more robust to noise and stay closer to the baseline score for larger deviations of noise. As such the419
EMD scores provide a more stable metric to describe remapping stability than Pearson’s r.420

Given that Pearson’s r is so sensitive to outliers and these ratemaps were un-smoothed and un-normalized421
post added noise, we repeated the procedure by smoothing ratemaps with a gaussian kernel (size= 5,422
� = 1) and normalizing post smoothing (Figure S5, S6). In doing so, we demonstrate that the observed423
trend holds and the normalized EMD (Wasserstein distance) again proves to be a more robust metric.424
We first find that the non-linear trend of Pearson’s r scores across noise standard deviations seen in the425
unnormalized case remains but shifts to more linear in the smoothed-normalized case. We observe this for426
both the non-overlapping and partially overlapping scenarios. EMD on the other hand is again a more stable427
choice and deviates less from the baseline score for overlapping and non overlapping fields. The whole map428
EMD scores also have noticeably fewer outliers in that there are fewer large peaks away from baseline. We429
see similar trends in a third test with normalized but unsmoothed ratemaps where Pearson’s r is unchanged430
from the unnormalized case owing to the inherent normalization procedure of computing Pearson’s r.431
Therefore EMD is less sensitive to degeneration for both unnormalized and normalized ratemaps, with432
or without smoothing, emphasizing the use for it in identifying regions of low remapping for particularly433
noisy or disease-driven degenerate spatial maps434

We therefore demonstrate that the EMD computed between two ratemaps is robust to noise and435
degeneration while Pearson’s r is not. The emphasis however is on a robust distance between two non-436
identical ratemaps (two different cells/sessions) in the presence of increasing noise. While remapping437
stability is often assessed between different cells or a single cell across different sessions, this is not the438
only case that can benefit from informed stability analyses. In fact, the EMD should also maintain this noise439
robustness in a within-cell or within-session comparison as opposed to an across cell/session comparison.440
This is an important property in order to confidently localize a field on a map and describe regions of high441
or low remapping as they relate to spatial locations of different objects, points or even other centroids/fields442
on that same map.443

3.3 EMD distributions extend field localization and capture remapping relative to a point444

To test such within-session stimulus/location-relative stability, we opted to compare the performance445
of the EMD to Pearson’s r as well as to established field localization methods based on peak firing rates446
(Fyhn et al. (2007)). Specifically, we sought to understand if the EMD could be used to locate fields and, by447
extension, to identify specific regions of interest in stability analyses. To do this, we use an adjusted EMD448
metric computed between the true whole map and a pseudo-map where all the density has been placed in a449
single bin (single point Wasserstein distance). This process is repeated across all possible bins in the 17x17450
spatial map such that a map of EMD scores should be lowest (least dissimilar/most similar) at the region of451
lowest remapping. In the case of place fields or other single field cells, the point of lowest remapping is452
presumed to be at or near the centroid of the field. We do this for a rate map with low and high standard453
deviations of added noise. Correlations are computed between the whole map and point map while field454
extraction is done on the whole map. To account for border and numerical issues that reflect the scores, we455
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pad the ratemap with N=2 bins (Figure S8). To reduce the influence of outliers on Pearson’s r and firing456
rates, we smooth the ratemaps after adding noise (Figure S8). We note that smoothing primarily recovers457
Pearson’s r’s accuracy but not the EMD which remains robust without smoothing (Figure S8). We also find458
that, as the amount of noise is increased, the EMD is more robust to noise than Pearson’s r and the peak459
firing rates, with the spatial bins holding the top 20% of EMD scores being less spread out and less sparse460
than the spatial bins holding the top 20% of Pearson’s r scores or firing rates (Figure 4, FigureS7, Figure461
S8). This is particularly evident on noise heavy maps where Pearson’s r and peak firing rates lose their462
specificity towards the region of lowest remapping while EMD retains it. That is, the scores become less463
specific and therefore less sensitive as a tool to determine the true centroid of a field, locate that field on a464
map and quantify any associated changes.465

In fact, with greater noise, the quality is sufficiently degraded to result in multiple fields being detected466
despite there being a single place field on the original map. These often smaller fields that are outside the467
region encompassed by the top 20% of EMD scores would be removed experimentally if they were below468
a certain area threshold. However it is not uncommon for noise blobs (noise fields) to cross this threshold469
and the number/shape can often vary with ratemap smoothing parameters that are part of the field detection470
process (Grijseels et al. (2021b)) (Figure S9, Figure S10). As such blob detection algorithms based on a471
percentage threshold of the peak firing rate may be more robust than other existing methods but can result472
in too many fields being detected (Figure S9, Figure S10). In the case of single fields, the EMD is a more473
robust metric to measure remapping relative to a point than the Pearson’s r score and may complement474
field localization by filtering/validating extracted fields in cases of noisy rate maps.475

In the case of dual fields however, the top 20% of EMD values span a contiguous region that includes476
the area spanned by both fields. While EMD is still robust here, we can see that it does not capture the477
separate nature of each field at high noise (Figure 5). In fact, while the top 20% of EMD scores are robust478
to field shape at low standard deviations, this is not the case for larger standard deviations where the map is479
sufficiently distorted for the EMD to miss the dual field relationship. Despite this we still observe that the480
relative positioning of the highest EMD region is more consistent and less degenerate at higher standard481
deviations (Figure 5). We see that the EMD peak regions are dependent on the placement of fields on the482
map. With multiple fields, the lowest EMD region will be located at a weighted average of all fields, which483
is the lowest point of remapping, and requires the least amount of work in order to shift all the density to484
that point as opposed to any other point on the rate map.485

As such, the map-to-point EMD approach is still informative in the case of multiple fields and the486
distribution of EMD values generated by comparing remapping at every possible point allows for a487
localization of remapping regions. This can be used to identify the region, or quantile, of remapping relative488
to a known stimulus region (e.g. object location) and could even help filter out detected fields that fall489
far outside of the contiguous regions of lowest remapping. We also see that this distribution is sustained490
through increasing noise providing a robust metric to assess spatially correlated and/or driven remapping.491

3.4 EMD captures object or trace cells and other position/rotation driven remapping492

The noise robustness of the EMD using the map-to-point approach, coupled with the symmetrical493
properties shown and a quantile reference distribution, lends itself to the investigation of specific entorhinal494
and hippocampal cell types. Specifically, the EMD map-to-point approach involving a quantile reference495
distribution can be used to track remapping relative to a stimulus point (object location), both current496
and past (object and object-trace), relative to a stimulus region, both general (N,S,E,W) and specific497
(single point or multi-location), and relative to current position, both discrete (place cell with single498
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preferred x,y location) and continuous (stepwise sliding window). With the findings of object, location499
and stimulus encoding playing a central role in EC-HPC circuitry, it is critical that we are able to quantify500
such remapping to understand its role in episodic memory and changes associated with impairments in501
this role (Wilson et al. (2013a), Chao et al. (2016), Wilson et al. (2013b), Tsao et al. (2013), Wang et al.502
(2018)). Additionally, point driven remapping is especially important given theories of EC functioning and503
mounting evidence for relative temporal tracking of stimulus locations and identities in LEC (Wilson et al.504
(2013a), Tsao et al. (2013), Wang et al. (2018)). Such point remapping is also found in visual areas where505
remapping of pointers is suggested to underlie an attention mechanism (Cavanagh et al. (2010)). This506
evidence further supports the notion of attention-modulated stimulus tracking in the LEC where relative507
changes in cell responses need thorough characterization to understand their functional role.508

In the case of object location tracing, we can provide both relative and specific information. In the509
relative case, we make use of a distribution of map-to-point EMD quantiles generated by computing510
distances between a cell field and a series of randomly sampled locations. We can then compute distances511
to known object locations and describe, relative to the reference distribution, which one leads to the512
lowest quantile. For more specific tracking involving a distance threshold from the object, we can use a513
combination of the whole map-to-point map EMD and centroid distances (euclidean distance between514
field centers). Specifically, for a given NxN ratemap, we compute the EMD between the true rate map515
and a pseudo rate map where a single bin (object location) holds all the density. We can do this relative516
to the current session/trial or a previous session/trial. We consider a model experiment setup where an517
object is shifted across four possible locations and a synthetic object ‘cell’ traces the current location of the518
object with the placement of its field (N = 17, � = 1) (Figure 6). At each object ‘session’, we compute519
the centroid distance between the field and all 4 possible locations as well as map-to-point EMD values.520
We leave the EMD as a distance instead of a quantile since our setup guarantees the object location is at521
the minimum quantile and we only test 4 points. We see that these values are at their lowest when the522
field is overlapping with the object location and identical when at opposing yet equidistant locations to523
the current field. Centroid distances enable us to impose distance requirements and provide more specific524
localization. In practice, they also provide additional information regarding field shape/dispersion such as525
when the EMD quantile may be lowest at one object location while the centroid may be closer to another526
location. Thus the single point EMD (Wasserstein) can be used, along with centroid distances, to determine527
the object location that requires the least amount of work in moving the field. This demonstrates that we528
can quantify remapping towards the current object location on a trial, previous trial location or even future529
trial location (if we suspect the subject’s cell of predicting the change). In doing so, the EMD enables us to530
identify object, object-trace and/or other types of cell tracking mechanisms.531

Importantly however, we again notice the reflective property of the EMD where two possible object532
positions share the same EMD value despite having different centers. The location of the objects on533
the map and the vector transformations from the field centroids towards these different locations allow534
us to differentiate between them despite the similarity in EMD scores. Therefore, a substantial shift in535
centroid location associated with a low remapping value can be indicative of rotational remapping for536
a map/field. We can see that this property is not present with Pearson’s r scores which are unable to537
quantify any rotational remapping or object tracing resulting in non-overlap with r=0 at all points outside of538
current object location (N = 33, � = 3 for rotating field) (Figure 6). Identifying rotational remapping and539
describing the angle and direction of a rotation is important to understand how these rotations come about540
and the specific influences that may be driving them or that they may be driven towards. These rotations,541
either whole map or for a specific field on a map, have been observed experimentally in different contexts542
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including, but not limited to, grid cell rotational realignment in entorhinal cortex (Fyhn et al. (2007)) and543
place cell cue-driven rotations (Fenton et al. (2000), Muller and Kubie (1987)).544

EMD is even more suitable to quantify these rotations and other stimulus driven remappings as it can be545
computationally simplified for the point map case. Specifically, we show that the properties seen in the546
whole map to single point map EMD computation are held in cases where the object location is poorly547
defined or when we are restricted to a field. In the former case, we computed the EMD between only the548
field on a map and a general quadrant encompassing ¼ of the square arena and including the current object549
location. In the latter, we computed a simplified, normalized EMD (single point Wasserstein) between only550
the field on a map and a singular point rather than the entire point map. In both cases the reflective property551
that supports complex remapping involving rotations and/or tracing is maintained. Therefore the concept of552
a whole-map to point-map approach can be generalized to any combination of whole-map/field-map to553
point-map/quadrant-map/single-point remapping.554

The generalization of the whole map - point map EMD into a whole map - single point Wasserstein555
reduces computation time and provides a simpler and more flexible way to apply the EMD computation.556
This is highly useful for less specific remapping cases involving no object locations but broader environment557
differences spanning multiple spatial bins. For example, EMD can also be used to characterize rotational558
remapping of border cells or remapping towards/driven by entire quadrants/regions of an arena/environment.559
EMD is also unrestricted by non-overlapping rotational remapping. If we consider remapping in the form560
of field rotation for a pair of overlapping place fields, we see that Pearson’s r cannot effectively describe561
rotations. We show that the angle of rotation or presence of a different angle of rotation cannot effectively562
be distinguished. We find that Pearson’s r is close to 0 for around 100 to 250 degrees of rotation and563
is blown up below and above those limits. EMD on the other hand is much smoother across all tested564
angles demonstrating its effectiveness both for rotational remapping that results in either overlapping or565
non-overlapping fields (Figure 6).566

3.5 EMD on spatial maps is robust to rate changes567

The feasibility of the EMD is not only supported by the various simplifications of its computation (map568
to point, sliced map, field to field), but also by the rate robustness seen with the EMD in previous studies569
(Grossberger et al. (2018), Sihn and Kim (2019)) and in our results. Given that firing rate can vary within a570
session and even more so across sessions separated by days, the EMD benefits from having rate robustness571
properties which allow for a characterization of spatiotemporal changes alongside the traditional rate572
remapping quantifications. In the previous study, EMD was shown to be rate robust for temporal coding573
by varying the total number of spikes. The authors demonstrated that the variability of the EMD across574
different firing ratios of spike trains was negligible whereas the distance variability for varying degrees of575
temporal similarity was not, thus allowing for a rate-robust pure-temporal spike train distance (Grossberger576
et al. (2018), Sihn and Kim (2019)). We also see this rate-robustness in our data where EMD values do577
not vary significantly with different firing rate ratios using normalized EMD distances. Additionally, it is578
common practice in field comparison studies to discard low firing rates to reduce spurious correlations579
caused by noise. While this can help reduce noise effects, there is an inherent loss of information associated580
with the change in computed firing distribution. Therefore having a rate robust metric that can include all581
spikes with minimal impact from noise is especially important.582

As such, we propose the use of a binary EMD to describe field dispersion regardless of the rate distribution.583
We demonstrate this rate robustness using the binary EMD generalization alongside normalized and584
unnormalized whole-map and field-map EMD distances (Figure 7). To do this, we used the scaling of place585
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fields as a type of rate transformation. We can view this transformation as an increase in field intensity586
where larger intensities indicate higher firing rates while smaller intensities indicate lower firing rate. For a587
fixed field, scaling its activity across sessions, we computed three measures of EMD remapping involving588
whole map to map EMD, field to field EMD and a binary EMD that imputes 0 outside a field and 1 inside589
a field thereby silencing rate effects and varying solely with density dispersion. In practice, one could590
compute two separate ‘binary’ metrics where one is field restricted and imputes 0 or 1 as described while591
another spike density EMD would use all raw spike positions (x,y for a given spike) directly without592
distributing them into a weighted (NxN) firing rate map (whole map dispersion). Since we synthesized593
our data for these simulated cases, we can only apply the binary EMD and not the whole map spike594
density EMD. We repeat the selected EMD measures on our rate maps for normalized (Wasserstein) and595
unnormalized (EMD) intensity changes (place field scaling) (Figure 7). Given that the binary EMD uses596
raw spikes rather than firing rate maps, we find that the scores are the same in both the normalized and597
unnormalized case. As such, the binary EMD provides a rate robust metric to quantify the dispersion of rate598
maps and/or the dispersion of the underlying field in the ratemap, regardless of the rate distribution across599
the map/field. This binary EMD approach can thus be used to describe remapping without the influence of600
the rate distribution.601

In the case of EMD measures including rate influences, we test both the whole map EMD and the field602
restricted EMD. In the normalized case, we see that the field EMD (Wasserstein) and the whole map EMD603
(Wasserstein) show similar gradients/rates of change across intensity scaling factors (standard deviations).604
This is not the case when unnormalized where, as we increase the intensity, the whole map EMD and605
field EMD increase their separation. When compared to the normalized case, this is reflective of the use606
of raw firing rate scores which, at larger standard deviations, result in larger differences between whole607
map EMD and field EMD. However, the use of the normalized and unnormalized EMD results in similarly608
evolving trends for the distance metric enabling a rate robust interpretation of the results. Therefore, when609
comparing two identical spatial maps with varying firing rate ratios, the raw EMD value itself is highly610
stable if using the binary EMD or the normalized EMD but varies when using unnormalized rates (Figure611
7). These differences therefore allow the EMD to be manipulated in such a way that rate effects can612
be separated from spatiotemporal changes and the underlying shifts in shape and dispersion described613
regardless of intensity changes. As such, we can investigate remapping both with and without rate effects.614
We can characterize remapping for reduced rate effects (normalized EMD == Wasserstein distance) and raw615
rate effects (unnormalized EMD) and compare these to binary or spike density EMD scores to separately616
quantify the contribution to remapping provided by rate and/or spatiotemporal changes.617

3.6 EMD outperforms linear and non-linear metrics618

While Pearson’s r was the primary metric tested alongside EMD, owing to its popular use in remapping619
studies, it is not the only plausible metric to apply. As such, we also thought it relevant to compare the EMD620
and Wasserstein metric to another common metric. Since Pearson’s r is a strong linear metric, we opted for621
a non-linear metric found in the Spearman rank correlation coefficient. We repeated all figures with the622
spearman rank coefficient instead of the Pearson’s r coefficient and provide a sample of key figures in the623
supplementary documents (S12 - S18). We find that the EMD remains the superior choice as an overall624
more sensitive and robust metric. Specifically, we see that Spearman-⇢ actually outperforms Pearson’s625
r in its spatial sensitivity but still cannot effectively capture all transformations resulting in non-overlap.626
While in the case of two overlapping circular fields of identical shape Spearman-⇢ is fully symmetric like627
the EMD, it does not maintain this property across different field shapes with the overlapping ellipse pair628
(same angle of rotation) only allowing for a distinction of left and right as opposed to all four corners.629
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In fact, despite being a non-linear metric, Spearman-⇢ cannot effectively quantify all types of complex,630
non-linear transformations. This is further seen in its inability to quantify overlapping identical fields across631
different intensity scales. Spearman-⇢ is however capable of describing transformations such as rotations or,632
depending on the field shape, single point/quadrant remapping. This however is highly restricted by noise,633
as is the case with Pearson’s r. We find that Spearman-⇢ is not robust to noise and quickly degenerates away634
from the baseline, no-noise Spearman score. Spearman-⇢ is therefore similarly susceptible to Pearson’s635
r despite the added nonlinear sensitivity. Overall however, the EMD’s non-linear selectivity is more636
encompassing, more robust and more effective at quantifying and characterizing the spatial transformations637
underlying remapping.638

3.7 EMD applied to real spatial data639

The effectiveness of the EMD spans a broad range of spatial transformations seen in a variety of contexts,640
and with different brain regions. Synthetic data alone however cannot recreate all the intricacies present641
in spatiotemporal representations. As such, we offer examples of the EMD’s increased spatial sensitivity642
using activity maps from recorded cells. We offer a combination of individual examples that depict specific643
cell types, or representative maps, as well as an open-source place cell dataset from the hippocampus644
(HPC) (Grijseels et al. (2021a)).645

In our individual examples, we share cells from both the MEC and HPC of AD mouse models (Figure646
8). We also provide additional examples from the HPC of AD mouse models and the MEC of non-AD647
models (Figure S19-S20). We compute the remapping distance, and correlation, between the spatial map of648
matched cells on a first, reference session, and a subsequent, shifting session. We shift the center of the649
latter session map to all possible bins in the ratemap and recompute stability measures to assess how the650
gradient of EMD and correlation values support quantifying remapping. Given this approach, we anticipate651
a smooth gradient of EMD values as the second session is shifted further or closer from its center. As652
we shift the second map, we add constant values of 0. However, for MEC examples only, we also shift653
with wrapping such that no aspect of the map is replaced with 0s (Figure 8A). This is because of the grid654
symmetry in MEC where it is more appropriate to treat maps as part of a wider grid module. We include655
both low noise and high noise maps and provide a selection of high grid, high border and high spatial656
information score examples (Figure 8, Figure S19-S20).657

In doing so we find multiple strengths of the EMD discussed earlier. Primarily, we observe that the EMD658
is much more effective at describing remapping and is not greatly influenced by these small shifts, as659
evidenced by the smooth gradients of EMD values. Pearson’s r on the other hand shows its lack of spatial660
sensitivity. For high noise examples, we see that spurious correlations can cover the entire map. For low661
noise examples, as well as sparse firing, we see that 0 correlation scores can cover significant regions of662
the map and prevent the true degree of similarity from appropriately being quantified. In fact, when map663
noise is particularly widespread or firing is especially sparse, Pearson’s r gradients can be fragmented and664
misleading in the information they carry. Correlation in practice is therefore too ‘brittle’ and non robust to665
minor spatial shifts. Given the focus of correlation on bin to bin similarity, we show how these minor shifts,666
commonplace in experimental data, can result in similar maps obtaining a low correlation score. On the667
other hand we also show how two dissimilar maps can incorrectly be classed as highly correlated given668
widespread noise in the ratemap. The distributional aspect of the EMD approach rescues these effects.669

Additionally, we see that Pearson’s r suffers from this bin to bin approach in experiments involving670
changing arena shapes. We apply the same approach to cells recorded from the HPC of AD mouse models671
tested on alternating rectangular and circular arenas (Figure 8B). We note that the EMD can be computed672
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between two distributions no matter the size difference while Pearson’s r requires a bin to bin comparison673
and is therefore restricted by the smaller distribution’s size. As such, while correlation values can be674
computed for every possible center point, certain post-shift maps involve fewer bins with which to compute675
a correlation. Therefore we find a smooth gradient for EMD values while Pearson’s r struggles to accurately676
capture the similarity between the two distributions, particularly for center shift bins in the corners of the677
map (outside circular arena).678

Examples so far have focused on 2D spatial maps, often with multiple fields. Pearson’s weaknesses679
however are not restricted to 2D spatial maps, nor to multi-field cells, and also extend into relative decoding.680
Specifically, results with synthetic data suggest that Pearson’s cannot effectively support similarly between681
a reference point, or set of reference points. In a further example, we test the EMD on place cells obtained682
from head-fixed two-photon recordings in mice running across a VR linear track (Figure 9, Figure 9S).683
We use the deconvolved suite2p spike outputs directly to compute 1D rates in each bin for each cell in the684
dataset (Figure 9). We do not filter out specific cells based on noise, firing rate, spatial information or any685
other metric. Instead we offer the full dataset of linear ratemaps as a noise heavy dataset including both686
place cells and non-spatial cells in the hippocampus. For each cell, we compute the remapping distance687
and correlation score relative to a pseudo-map where all the density is placed in 1 bin, across a window of688
bins or distributed with a gaussian template.689

We consider two reference locations: the start and middle positions of the linear track. In the former case,690
given that we sort cells based on the peak rate, we expect a successful measure of relative similarity (or691
dissimilarity) to capture the same trend as the sorted peak firing rates. In the latter case, given the reference692
point is in the middle, we expect a successful measure to decrease in similarity (or increase in dissimilarity)693
as we move in either direction away from the center point. Therefore here we expect a somewhat ’v’ shaped694
trend that peaks at the middle position. We find that the EMD demonstrates this expected behavior on both695
cases while the bin to bin approach of Pearson’s r is unable to quantify relative differences in stability696
between each cell map and the reference map. We also find that the EMD score is robust to the size of the697
window, and does not vary greatly if a gaussian template is used instead. Pearson’s r on the other hand698
shows more spurious increases in similarity as the size of the window is increased.699

We note that, in a preprocessing step to generate 1D linear firing rates, we average deconvolved spikes700
across multiple frames to reduce the number of bins. This creates a bin parameter to which correlation and701
not EMD is vulnerable. This is again owing to the distributional aspect of EMD which allows for stability702
despite these hyperparameters while correlation’s bin to bin approach does not. Given that the authors of703
the dataset used �F/F0 values in their analysis, we repeated these results with the fluorescence traces and704
found that the same set of results holds (Figure S21).705

We also note that, in practice, EMD quantiles are superior to EMD distances and enable for comparisons706
across animals, contexts or other groups where behavioral effects can influence raw EMD values. We707
therefore repeat this analysis using the single point EMD with two sets of reference quantiles (Figure 9). In708
the first, we demonstrate quantiles using across cell reference distributions. That is, for a given cell map to709
reference map distance, the quantile describes how many of the other cell distances are larger. This would710
be suitable for a simple threshold technique (e.g. top10% = q < 0.1). This however describes across cell711
references for a within cell analysis (relative to a reference map). If stability were being assessed across712
cells (e.g. from one session to the next), an across cell reference distribution would be more suitable if713
made up of remapping distances computed on the incorrect cell-pairings. Such a reference distribution714
would be more flexible, and could be separated based on hierarchal data. For example distributions can be715
computed for mismatched distances at the level of animals, sessions, contexts or other.716
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Such reference groupings are not seen for within cell reference quantiles. We provide such an example717
using random sampling of locations within the firing map (Figure 9). In doing so, we create a spatial718
reference distribution consisting of distances relative to randomly smapled positions. While simple in 1D719
maps, sampling techniques can vary for 2D maps. Given how the distribution of EMD distances across a720
map looks (Figure 1, Figure 2, Figure 4), it is appropriate to attempt an even sample across the map. To721
do this we can use approaches such as rectangular sampling for unmasked, square ratemaps or hexagonal722
sampling for masked, circular ratemaps.723

In our example, while based on different counterfactuals and analyses, the different choices of across724
or within cell reference distributions provide similar results. This is likely owing to the simple task725
design however in practice, the choice of reference distributions is important and can vary given different726
hypotheses. It is also important to note the difference in raw quantile values. In the within cell reference,727
quantiles are generally larger. This is something also observed in 2D maps and can be explained by the728
symmetrical, distributional approach of the EMD, as well as the emergence of multiple fields or areas of729
noise. To reduce this, we can sample locations at a certain distance from our reference point. Additionally, in730
practice, it is often helpful to extract the location of different fields and compute these metrics separately for731
different fields on a map. The comparison of whole map to field metrics is also informative and can explain732
observed quantile distributions. Therefore we show how, in practice, cell references can be computed within733
and across cells depending on the use case, expected counterfactual and other topic-specific knowledge.734

While we acknowledge that previous studies have used Pearson’s correlation coefficient to evaluate735
remapping using a reference template (Masuda et al. (2023)), or a set of gaussian templates (Nagelhus et al.736
(2023)), our results with synthetic and real data demonstrate that the EMD is more robust to such template737
choices. For example, in one study, a reference template computed from the activity of cells in the baseline738
context was used to compute similarity (Masuda et al. (2023)). However with the bin to bin correlation739
approach, such a template could vary in results given different parameters that shift, bin or smooth the740
correlated bins. In another study with 2D ratemaps, this required using multiple sets of gaussian templates741
spanning a range of hyperparameters (Nagelhus et al. (2023)). The distributional focus of the EMD and the742
ability to describe dissimilarity regardless of size, dimensions and binning demonstrates its superiority to743
Pearson’s r in practice. This is especially true for noise-heavy, multi-field and different-sized ratemaps that744
are either 1D or 2D and applies to within cell dissimilarity and reference relative dissimilarity.745

4 DISCUSSION

Through these simulated and recorded cases of remapping, we demonstrate that the Earth Mover’s Distance746
(EMD) is more spatially sensitive in characterizing remapping than Pearson’s r correlation coefficient747
and other plausible metrics like the non-linear Spearman rank correlation coefficient. We find that both748
Pearson’s r and EMD are suitable for cases of remapping where fields are still overlapping from session to749
session. However, we demonstrate that Pearson’s r is unsuitable in describing remapping that results in750
non-overlapping receptive fields whereas EMD can numerically quantify remapping at any point in the751
ratemap. This EMD property is especially useful in experimental setups where arena shape is varied as they752
result in specific map areas, where a cell can reasonably move to, that cannot be appropriately quantified753
with Pearson’s r. For example, consider a field that remaps to the corner of a square arena after having754
been in a circular arena with diameter such that it is inscribed within the square. This field will have 0755
correlation when tested on the circle arena followed by the square arena because of non-overlap at the 4756
corners despite the fact that transformations to such regions are non-identical and can be distinguished757
from each other using the EMD. We show that EMD holds its sensitivity for circular/elliptical place fields758
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and wide/narrow spaced grid fields. Additionally, we find that the symmetry offered by EMD allows us to759
describe more complex non-linear translations such as rotations and scaling of fields. In fact, we find that760
Pearson’s r is less suitable than the EMD in describing either scaling or rotations and does not offer the761
same sensitivity that the EMD provides. More importantly however, we show that this spatial sensitivity of762
the EMD to linear and non-linear transformations is robust to noise and field degeneration. By manipulating763
fixed fields across a range of standard deviations of added noise, we find that, for both normalized and764
unnormalized ratemaps, the EMD is more stable relative to the ‘true’ EMD score. That is, as we increase the765
standard deviation of noise, EMD varies less frequently and at later standard deviations than the Pearson’s766
r score. Notably, we see that the EMD performs similarly in the normalized and unnormalized cases also767
demonstrating a robustness to rate. While the raw EMD values change for the normalized and unnormalized768
ratemaps, the distribution across standard deviations evolves in the same ways, with fewer outliers in the769
normalized and smoothed-then-normalized cases than the unnormalized case, further demonstrating a type770
of robustness to rate. The application of a binary EMD where all spikes are considered with even weight by771
imputing 0 and 1 for outside and inside the field respectively further disentangles rate effects by exclusively772
describing the underlying dispersion of the field or map, regardless of firing rate. This highlights the use773
of such a metric in describing field or whole map distortions where the spatial distribution of spikes can774
change separately to rate and even the field centroid.775

Such dispersion metrics can be thought of as purely spatial and can be extended to include the entire776
distribution of raw spike positions as part of a spike density EMD. This ‘pure spatial’ metric may be777
most useful in the case of linear tracks with identical navigation structure across animals but can also778
be extended to arena navigation studies where coverage and occupancy vary from animal to animal. In779
the latter, caution should be taken to account for coverage where arena sizes may be consistent but map780
exploration varies from animal to animal. Normalization of distances by coverage limits would reduce such781
effects. Additionally, care should be taken in interpreting dispersion metrics (binary and spike density) in782
the case of extremely biased occupancy where most of the spiking distribution will fall in the same area783
purely due to biased behavior. This argument also extends to the use of EMD to assess temporal similarity784
profiles as part of a ‘pure temporal’ metric (Grossberger et al. (2018), Sihn and Kim (2019)). These785
pure metrics may be best interpreted in such a way where especially stable distances (binary/density or786
temporal EMD) along with fair occupancy, and while accounting for coverage limits, would be a non-trivial787
result, as would differing trends among the rate, temporal and spatial components of remapping. In fact,788
given that rate remapping is well defined and temporal remapping of firing profiles can be quantified789
(Sotomayor-Gómez et al. (2023)), we further suggest the EMD and single point Wasserstein metric to790
describe the spatial component in firing rate maps enabling a much more detailed and flexible framework791
for remapping. Through various manipulations, this would allow for an understanding of how different792
components of neural coding interact by separately and concurrently considering the rate, spatial and793
temporal components.794

We also see in these examples that the whole map EMD is more suitable than the field-restricted EMD795
in capturing remapping despite degeneration. The reason behind this is likely two fold. The first being796
that the field-restricted EMD does not capture noise across the entire spatial map. Since, in our example,797
randomly sampled normally distributed values are added at every position in the ratemap (NxN noise), the798
specific subset added to the indices of a given field may be particularly large/small relative to the rest of799
the distribution. As such, from step to step (each increase in std dev), restricting the EMD metric to the800
single field can cause larger deviations than would be seen with the whole map case. The second reason801
lies in the methods for detection of gaussian fields and the sensitivity of these approaches to noise and802
spatial degeneration. The best approach is often to select a contiguous region from a given spatial map,803

20

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.07.11.548592doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548592
http://creativecommons.org/licenses/by-nc/4.0/


Aoun et al.

with a minimum size, where the firing rate is above a certain peak threshold (Fyhn et al. (2007), Grijseels804
et al. (2021b)). Although this is suitable in the cases of low noise, degenerate and noisy spatial maps are805
often experimentally recorded and need more granular characterization of place field centroids and area.806
Traditional field characterization methods are sensitive to noise and often involve smoothing of the ratemap807
as part of this procedure (Fyhn et al. (2007), Grijseels et al. (2021b)). With minimal smoothing, localization808
of place fields in a noisy map results in multiple ‘noise’ fields detected with centroids deviating from the809
true field positions (Figure S9, Figure S10). With greater smoothing, localization of place fields on a noisy810
map can result in too wide an area being characterized as a field and multiple fields being incorrectly811
merged (Figure S9, Figure S10). In the presence of similar noise throughout the rate map, smoothing can812
even result in a contiguous region crossing detection thresholds despite being outside the fields of interest813
(Figure S9, Figure S10). Therefore the field EMD can be particularly susceptible to the accuracy of the814
detected fields and by extension to the underlying field detection process. However both the whole map815
EMD and field EMD still offer more stable and robust alternatives to Pearson’s r, especially in cases of816
high noise and for disease states.817

While we find that the whole map to point map EMD does not replace the map blobs (fields) detection818
approach, we show that it can help inform classification of valid blobs by highlighting the region of lowest819
remapping through a gradient of remapping values. In the case of known single field cells (e.g. place820
cells), the map to point EMD will identify the region of lowest remapping which falls near the true field821
centroid and can therefore be used to filter out extracted noise blobs that may have crossed the area/size822
threshold but fall far from the region of lowest remapping. In the case of dual fields, the EMD can only823
separately identify fields at low noise levels and using the top 90% threshold as opposed to the top 20%824
use for Pearson’s r or 20% peak firing rates. In fact, in the case of dual fields, the EMD gravitates to the825
center point between the two fields. This is the point that requires the least amount of remapping. While it826
cannot be used for field detection in this case, it may yet be used to filter out blobs that fall far from this827
region. Therefore the whole map to point map EMD approach is suitable for localizing in the case of a828
known single field (e.g place cell) or to identify the region of lowest remapping in the case of multiple829
fields. In fact, the EMD is not as susceptible to noise as Pearson’s r and peak firing rates in that it performs830
more consistently and with less degradation in either the case of unnormalized ratemaps or smoothed then831
normalized ratemaps.832

Moreover, the remapping quantiles that are generated across the entire map for single and multi-field cases833
can be used as a standard reference distribution for a given cell. That is, single point EMD (Wasserstein)834
scores can be converted into a quantile below which all values are smaller (easier point locations to remap835
to) and above which all values are larger (harder point locations to remap to). We see that these quantiles836
are a result of computing remapping scores between the whole map and every possible point on the rate837
map (Figure 4). In doing so, single point EMD values, and by extension individual fields, can be localized838
on a rate map through the ‘region’ of lowest remapping that they fall in. These quantiles may also enable839
comparisons across different cells where raw EMD values cannot be directly compared. For example,840
in practice, while arena size may be consistent, coverage and occupancy can vary, as can firing rates as841
a result of biased exploration. Despite the rate robustness of the EMD, distances can vary on different842
scales due to different behavior profiles. In such a scenario, one might observe a comparable trend in843
remapping within a cell’s own sessions, and even across the wider population where all cells increase or844
decrease EMD values across sessions. Yet, the raw EMD scores may not be comparable. For example, two845
cells, each from a different animal, could both be near a specific map-region but with very different raw846
distances required to move there because of exploration. Even with consistent coverage of arenas, several847
experimental contexts make use of changing arena shapes thus changing the total distance available in the848
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EMD computation and creating the same situation for cells from the same animal across different sessions.849
Providing a quantile alongside a remapping value allows for a standard scale to describe how far/close the850
computed remapping score is relative to all the possible points of remapping in a rate map. If a position851
required the least remapping (e.g. exactly at the object location for an object cell or at the centroid of an852
individual field), then the quantile would be sufficiently small such that most or all of the other possible853
locations result in a larger remapping score. These quantiles are unique to the EMD and can be computed854
across noise standard deviations allowing for a quantification of remapping regions despite degeneration,855
instability and substantial behavioral/rate influences. These quantiles can also be used to describe spatial856
remapping when raw distances cannot be directly interpreted.857

The EMD’s viability as a remapping metric is bolstered by the computational expediency of its simplified858
cases (Figure S11). The sliced EMD approximation can adequately estimate the true EMD value. Using859
the sliced EMD across varying numbers of projections, with 10**2 offering a favorable balance of speed860
and accuracy, renders the EMD an optimal choice for cell remapping analyses. Nonetheless, the sliced861
EMD may still be computationally demanding in instances involving exceptionally large rate maps (e.g.,862
256 x 256) and a substantial number of cells. The modified map to single point approach also allows for863
swift and adaptable application of the EMD. This is particularly important in describing stability relative to864
specific locations. While we acknowledge that previous studies have used Pearson’s correlation coefficient865
to evaluate remapping using a reference template (Masuda et al. (2023)), or a set of gaussian templates866
(Nagelhus et al. (2023)), our results with synthetic and real data demonstrate that the EMD is more robust867
to such template choices. For example, in one study, a reference template computed from the activity of868
cells in the baseline context was used to compute similarity (Masuda et al. (2023)). However with the bin to869
bin correlation approach, such a template could vary in results given different parameters that shift, bin or870
smooth the correlated bins. In another study with 2D ratemaps, this required using multiple sets of gaussian871
templates spanning a range of hyperparameters (Nagelhus et al. (2023)). Therefore, with the linear runtime872
of both the single point EMD approach and Pearson’s r, it can be both more efficient and simpler to use the873
EMD metric. Avoiding such choices is possible because of the distributional focus of the EMD and its874
ability to describe dissimilarity regardless of size, dimensions and binning.875

The EMD on 2-dimensional maps is better equipped to describe the spatiotemporal patterns seen876
than Pearon’s r correlation coefficient. However, the temporal aspect of these maps could be further877
characterized by applying the EMD in a stepwise manner. In a basic example, one could take the spike878
train of a given cell and iterate over time windows of activity to produce a continuous string of EMD values879
describing remapping as it evolves over an experimental session. While this approach is highly unsuitable880
with Pearson’s r because of the need for same size distributions, and the over-susceptibility to spurious881
correlations at lower sample sizes, EMD has been shown in this paper to be more robust, and in previous882
work to support continuous application (Zhao et al. (2010)). Given that the EMD can be applied on raw883
spike positions (binary EMD) and does not require a rate map to describe the pure spatial and pure temporal884
components, we further propose it as a flexible tool for disentangling spatiotemporal components in a885
continuous-like setup. Such a setup could be used to describe remapping as it relates to specific temporal886
events/markers. With sufficiently long experimental sessions and high sample rates, EMD will support a887
characterization of remapping on smaller timescales than separate sessions and can enlighten intersession888
and intertrial remapping dynamics that are triggered or otherwise shaped by time. For example, one can889
consider an experimental setup where object location is rotated continuously or otherwise transformed890
during the session, as was seen in previous work (Shapiro et al. (1997), Knierim et al. (1995)). In such a891
case, applying EMD across a sliding window of spike activity can be highly informative in identifying how892
remapping evolves over time for a given cell and for the broader population. This can be especially useful893
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given the varying results seen in morph experiments where partial and complete remapping are seen to894
occur in different ratios across different studies (Wills et al. (2005), Leutgeb et al. (2005a), Colgin et al.895
(2010)). Using EMD we can better describe the quantity of remapping over time, the periods or triggers896
before/after which the gradient of remapping increases or decreases, and the amount of remapping across897
the population of cells (or ensembles of cells) at specific points in time.898

In summary, the Earth Mover’s Distance (EMD) offers a more comprehensive and spatially sensitive899
approach to characterizing remapping in comparison to the Pearson’s r correlation coefficient. EMD’s ability900
to handle non-overlapping receptive fields and intricate non-linear transformations, such as rotations and901
scaling, renders it a powerful tool for understanding the complexities of spatial navigation and remapping.902
Although Pearson’s r might remain useful in specific cases with linear relationships and overlapping fields,903
EMD’s versatility makes it applicable to a broader range of scenarios. EMD estimators such as sliced EMD904
are computationally expensive with respect to correlation metrics. However, most modern computers can905
easily handle the additional computational load and this should not be a hindrance to the adoption of EMD906
in most use-cases. The application of EMD in spatial remapping research has far-reaching implications907
in the study of memory and neurodegenerative disorders, such as Alzheimer’s Disease (Jun et al. (2020),908
Ridler et al. (2020), Fu et al. (2017)). By providing a more detailed analysis of spatial remapping, EMD909
can shed light on the intricate relationships between spatial representations, memory formation, and the910
influence of various factors on these processes. The enhanced understanding of remapping dynamics911
facilitated by EMD may contribute to the identification of potential therapeutic targets for memory-related912
disorders, thereby opening new avenues for Alzheimer’s Disease research and treatment.913
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Buzsáki, G. and Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal941
system 16, 130–138. doi:10.1038/nn.3304. Number: 2 Publisher: Nature Publishing Group942

Cacucci, F., Yi, M., Wills, T. J., Chapman, P., and O’Keefe, J. (2008). Place cell firing correlates943
with memory deficits and amyloid plaque burden in tg2576 alzheimer mouse model 105, 7863–7868.944
doi:10.1073/pnas.0802908105. Publisher: Proceedings of the National Academy of Sciences945

Cavanagh, P., Hunt, A. R., Afraz, A., and Rolfs, M. (2010). Visual stability based on remapping of attention946
pointers 14, 147–153. doi:10.1016/j.tics.2010.01.007. Publisher: Elsevier947

Chao, O. Y., Huston, J. P., Li, J.-S., Wang, A.-L., and de Souza Silva, M. A. (2016).948
The medial prefrontal cortex—lateral entorhinal cortex circuit is essential for episodic-like949
memory and associative object-recognition 26, 633–645. doi:10.1002/hipo.22547. eprint:950
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hipo.22547951
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Figure 1. Identical place field translation. Stepwise horizontal linear translation of identical, overlapping
place fields (N = 17, � = 3) moving from the center to the right (A, C). EMD score is shown on the left
while Pearson’s r is shown on the right (top panel - EMD vs Pearson). 12 steps are shown and scores are
rounded for display. Scores from remapping tested at all possible centroids along a single row on the rate
map (bottom panel). EMD and Pearson’s r scores tested at all possible centroids in the rate map (N*N) (B,
D). Scores for horizontal and diagonal translations along the rate map are shown for all rows (N = 17)
(top panel). Heatmap showing the gradient of scores for both raw and inverted EMD (left and center) and
for Pearson’s r (right) (bottom panel).
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Figure 2. Identical grid field translation. Stepwise horizontal linear translation of identical, overlapping
grid fields (N = 3, � = 1) moving from the top left corner to the right and/or downwards on a rate map
(N = 17) (A, C). EMD score is shown on the left while Pearson’s r is shown on the right. 12 steps are
shown and scores are rounded for display (top panel - EMD vs Pearson). Grid maps were sliced from a
larger map with sufficient fields and bins to support N*N steps. Initial grid maps were chosen by taking a
slice from the wider map. Scores from remapping tested across N*N different shifts from the initial grid
map (0 to N combinations) (bottom panel). EMD and Pearson’s r scores tested at N*N different centroid
positions on the wider grid (B, D). Scores for horizontal and diagonal translations along the rate map are
shown for all rows (N = 17) (top panel). Heatmap showing the gradient of scores for both raw and inverted
EMD (left and center) and for Pearson’s r (right) (bottom panel).
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Figure 3. Incremental field degeneration. Stepwise nonlinear translation of overlapping fields (N = 33)
relative to a fixed field at � = 3. 12 steps are shown with 6 scaling down and 6 scaling up relative to
the fixed field (A). EMD score is shown on the left while Pearson’s r is shown on the right (left panel).
Scores from remapping tested across a range of standard deviations for the scaling field (right panel).
Incremental field degeneration for a pair of fields, non-overlapping and overlapping (B,C). Left panels show
the stepwise degradation in the rate map due to randomly sampled normally distributed noise with varying
standard deviations. Noise standard deviations are shown above the rate map plots. The distribution plots
show the computed remapping score between the pair of fields for the overlapping and non-overlapping
cases. Both cases have values for the EMD (red), field EMD (green) and Pearson’s r scores (blue) displayed
(right panels).
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Figure 4. Single field localization. Field localization plots across two different noise levels (rows: low
noise 0.1 and high noise 0.5). For each row in a plot, the first column shows the ratemap post added noise
with padding, smoothing and normalizing. The second column shows the EMD distribution on the padded
rate map with scores being relative to a point map with all the density placed in the bin at which the EMD
score is found. The third column shows the same map to point computation for Pearson’s r scores. The
fourth column shows the 80th percentile scores for the EMD (red) and Pearson’s r distributions (blue). The
fifth column shows the top 20% firing rates in the cell. The last column (sixth) holds the extracted blobs
(fields) from the padded ratemap with the centroid of each blob shown in red. The circle represents the
true field centroid. The star represents the centroid computed on the peak EMD scores. The triangle is the
centroid computed from the peak Pearson’s r scores. The diamond is the centroid from the peak firing rates.
The red dots are the centroids of a given field
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Figure 5. Dual field localization. Field localization plots across two different noise levels (rows: low
noise 0.1 and high noise 0.5). For each row in a plot, the first column shows the ratemap post added noise
with padding, smoothing and normalizing. The second column shows the EMD distribution on the padded
rate map with scores being relative to a point map with all the density placed in the bin at which the EMD
score is found. The third column shows the same map to point computation for Pearson’s r scores. The
fourth column shows the 80th percentile scores for the EMD (red) and Pearson’s r distributions (blue). The
fifth column shows the top 20% firing rates in the cell. The last column (sixth) holds the extracted blobs
(fields) from the padded ratemap with the centroid of each blob shown in red. The circle represents the
true field centroid. The star represents the centroid computed on the peak EMD scores. The triangle is the
centroid computed from the peak Pearson’s r scores. The diamond is the centroid from the peak firing rates.
The red dots are the centroids of a given field
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Figure 6. Complex non-linear field remapping. Stepwise nonlinear translation of overlapping fields
(N = 33) relative to a fixed field at � = 3. 12 steps are shown with 6 scaled down and 6 scaled up
relative to the fixed field (A). EMD score is shown on the left while Pearson’s r is shown on the right (top
panel). Scores from remapping tested across a range of rotation angles (bottom panel). Four corner point
driven remapping with top left, top right, bottom right and bottom left tested. Fields were positioned so
as to be fully encompassed by the rate map area. The first column shows the field location, four possible
object/point/stimulus locations (stars), and distances from the field centroid to each of the four positions.
The second column shows the whole map to whole map EMD scores with the full rate map and a pointmap
(1 at object location, 0 everywhere else). The third shows a field restricted EMD between a field and a
quadrant of multiple bins. The fourth column shows an approximation to the whole map sliced EMD
using only the field and the single point object point (single point Wasserstein). The last column holds the
Pearson’s r scores. Heatmaps demonstrate the scores in the four possible corners.
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Figure 7. EMD robustness to intensity changes. Incremental field scaling (increasing intensity) across a
(17,17) ratemap with a field at the center (A). Field is scaled from = 1 to � = 6 (left). Intensity changes are
considered using whole map EMD (red), field restricted EMD (green) and a binary EMD (blue) using raw
spike positions. Normalized (top right panel) and unnormalized (bottom right panel) weights are shown for
both. EMD scores tested against different firing rate ratios for two identical fields (B). Ratios greater than 1
and less than 1 were tested.
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Figure 8. Individual cell examples. Examples of ratemaps from the MEC and HPC of AD mouse models
for a reference session and a shifting session. Gradient of Pearson’s r scores tested at all possible map shift
centers (N*N) is shown to the far right of each cell example with the EMD gradient immediately to the left
of it. For each MEC example, the top row demonstrates a shift with no wrap (0 padding) while the bottom
row demonstrates a shift with wrapping (A). For each HPC example, only the no wrap row is provided, and
examples of matched cells across circular to rectangular arena transitions are included (B).
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Figure 9. Place cell population decoding. Place cell population decoding using a reference template and
a population of 1D rates across a 200cm linear track. The first plot in a row shows a population map of
linear firing rates. The second plot shows the distribution of EMD values, and the running average. The
third plot shows the population of correlation values, and the running average. The last plot shows the peak
firing rate trend overlaid with the running averages of each score distribution. Two sets of examples are
provided with reference templates highest in density at the start (A) and in the center (B). In each set, the
first row of plots uses a reference map with all the activity in a single bin. The second row uses a map with
the activity spread out across 10 bins. The last row uses a 1D gaussian template with sigma = 5. Reference
points, and windows, are plotted with a dashed black line in the final plot of each row. Reference gaussians
are overlaid in the final plot of each row. Population decoding with quantiles instead of distances. Quantiles
are computed using the distribution of EMD distances from all other cells (C). Quantiles are computed
using the distribution of EMD distances from a given cell relative to random reference locations (D).
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